让企业见到效益的技术才能真正算得上成功。邬贺铨院士在首届数字中国建设峰会大数据分论坛上与大家分享了大数据与企业数字化转型的一系列生动故事:苏州协鑫公司专注光伏切片,利用阿里开发的ET大脑分析0.2毫米厚度硅片长期积累的数据,从上千个生产参数中找出60个关键参数,通过优化生产流程,良品率提升1%,实现每年上亿元利润;联想集团利用其全球数据中心掌握的数据,与宝钢合作建立钢铁销量预测系统,通过机器学习和图谱分析找出关联,预测钢铁市场需求,预测精度92.2%,库存周期缩短20%,客户采购资金节约上亿元。
众多传统制造企业利用大数据成功实现数字转型表明,随着“智能制造”快速普及,工业与互联网深度融合创新,工业大数据技术及应用将成为未来提升制造业生产力、竞争力、创新能力的关键要素。有专家提出,制造业的大数据规模超过其他行业,且未来10年工业大数据增速要快于消费大数据。
大数据在工业领域的应用,实现了工业从研发、设计、生产、运营到服务全过程智能化,提升生产效率,降低资源消耗,提高产品质量。同时,数据驱动制造业生态变革,汇聚协作企业、产品、用户等产业链上的资源,通过平台开放共享,基于数据实现制造资源优化配置;还能实现产品、生产和服务创新,产生一系列新模式和新业态。《2017中国工业大数据产业发展概要》显示,2016年中国工业大数据市场规模已达150亿元,2020年预计将达到822亿元,在行业应用中,预计到2020年工业大数据的占比将达到6.64%。
不过,当前我国绝大多数工业企业的大数据发展应用还处于起步阶段,对于为什么要用大数据、搜集哪些大数据、如何利用大数据仍然不明晰,滞后于消费互联网。工业场景的高度复杂使得工业大数据应用面临更多困难。诸如由于制造业作业场景非常复杂,不同行业所使用的设备和工艺差别很大,数据采集难度大;大规模的工业数据量对数据存储、传输提出了更高要求;企业上工业云意识薄弱造成数据孤岛,以及数据安全存在问题等。
下一步,工业大数据的核心目标将是围绕不断优化制造资源的配置效率,探索方法、路径与模式,实现更好的质量、更低的成本、更快的交付、更多的满意度,提高制造业全要素生产率。利用我国工业门类齐全、互联网和电子商务的比较优势,实现新工业革命时代的“换道超车”。
[1] [2] [3] 下一页