“学生老问我,为什么大公司在类脑研究方面投入这么少?我说,目前有十几种解决方案,大公司要等能够看明白之后再选择一种。公司是追随者,但我们要做引领潮流的人。”施路平认为,独立思考的精神在人工智能学界难能可贵,研究者出于升职、加薪的考虑,不愿意坐“冷板凳”,但是,科研领域不少革命性的突破,就是在坐冷板凳的过程中产生的。“真理有时就是掌握在少数人手中。即便这个思路短期内没有成功,也为将来的进步打下了基础。要想引领就必须要有独立的思考,要咬牙坚持。”
杨强对此体会颇深。2005年,他在国际上率先提出“迁移学习”概念,意在让深度学习算法具有“举一反三”的迁移能力,不用处处从头开始。如今,迁移学习已经是全球学界和业界关注的焦点,百度、腾讯、微软都已经应用这项技术。而曾经,这是冷门概念,愿意师从他“死磕”这一技术路线的学生非常之少。
中国人工智能发展的短板还体现在产学研结合不足,从实验室到市场的链条太长。
记者在采访中发现,诸多人工智能领域的学者都已投身一线产品的研发。魏少军教授在带队开发可重构计算人工智能芯片Thinker;施路平教授的团队致力于开发脉冲神经网络与深度学习原理相结合的“天机”芯片,如今已经生产出样品、应用于自动驾驶自行车;杨强教授的迁移学习原理,应用于百度、腾讯等公司,他还创立了“第四范式”公司,将迁移学习算法应用于金融领域、优化银行的风控。
然而,几乎所有专家都在“吐槽”产学研的脱节。
“从实验室到生产出产品、再到推向市场,这个链条太长、整个过程太痛苦。”魏少军感叹,产业化的每个环节几乎都面临阻碍——研发时没资金;生产时工艺不能满足要求;在应用环节,各个领域沿用惯用的产品,新产品很难走进千家万户。
杨强表示,目前,中国企业中,真正具有前沿思维的还是少数。包括BAT、华为等大企业在内,仍然没有成为人工智能技术创新的主体。
“长此以往,中国企业将在全球人工智能竞赛中处于劣势。”施路平表示,目前来看,从核心芯片、操作系统再到底层框架,几乎都是以国外公司为主导,这导致中国的很多重要创新,都受制于国外公司,为产学研联动增添了新的障碍。
杨强认为,人工智能必须在现实中寻找到应用场景,未来的发展才具有意义。因此,产学研联动是一条必经之路,其中的困难应引起各界足够重视。
(本版稿件除署名外,均由记者王存福、周琳、马晓澄、王晓洁、付光宇采写)
上一页 [1] [2] [3] 下一页