VERT网络模型是通过带有时间、费用和性能等变量值的弧和节点,按照它们的相互关系连接起来的网状图,是一种随机网络,因此它属于数学模型。
一个数学模型是一个真实系统的抽象,一般说来,它可能而且应该比现实本身更简单,更清晰,更概括。然而,数学模型并不是真实系统。
好的数学模型必须能够反映出真实系统中所要研究方面的主要性质和特征。这取决于简化或抽象的合理性和科学性,取决于真实系统所能提供的各种信息的准确性和充分性。当然,也取决于进行这种简化和抽象的人素质和经验。因此,一般说来,数学模型的建立不可避免地要包括检验与修正模型的过程。
对真实决策系统,构造符合实际的随机网络模型,是应用随机网络评审方法进行风险决策分析的关键步骤。其中最重要的一环是绘制网络图,即构造网络模型。
构造网络模型的方法,它依赖于所决策问题(系统)的性质、大小及复杂程度,也随着不同决策者的习惯、经验和素质而不同。VERT建模方法与PERT方法类似。
构造网络模型的过程大体可分为以下几个步骤。第一步,确定决策的环境。这一步就是在调查研究的基础上,确定被分析系统的问题、决策目标、变量和约束条件以及可接受的风险水平。第二步,按工作进程与风险分析需要画出流程图。在调查研究的基础上,画出整个系统各个设计阶段的流程和各个设计阶段子流程。第三步,绘制VERT网络图。在第二步流程图的基础上,应用VERT的弧和节点功能,把流程图改造成VERT随机网络图。第四步,确定弧和节点的数据。确定弧上的时间、费用及性能参数和节点上参数及逻辑等,并在仿真运行中加以检验和修正,不断去伪存真,构造出反映真实系统的随机网络模型。
2.2数学描述
VERT随机网络模型是一个图论模型,称为图G,记节点集合为N,弧集合为A,则有 G={N,A};这里N={N1,N2,N3………Nn},Ni表示第i个节点,n为节点总数;A={Aij|i,j=1,2,3……n,i
VERT网络中有两种流。一种流是自身携带的网流;一种是网络流到此处的累计网流。对于弧,一种是由自身的时间(Tij)、费用(Cij)和性能(Pij)组成的网流;另一种则是由弧的累计时间、累计费用和累计性能组成的网流。对于节点,由于它本身不消耗时间、费用和性能,所以它没有自身网流,只有累计时间(NTi)、费用(NCi)和性能(NPi)组成的网流。弧和节点的累计网流都是网络模型的未知量,是模拟过程中要确定的模型基本解。有了它,就可对节点和弧的机动时间、关键线路等进行分析。